Brain size regulations by cbp haploinsufficiency evaluated by in-vivo MRI based volumetry
نویسندگان
چکیده
The Rubinstein-Taybi Syndrome (RSTS) is a congenital disease that affects brain development causing severe cognitive deficits. In most cases the disease is associated with dominant mutations in the gene encoding the CREB binding protein (CBP). In this work, we present the first quantitative analysis of brain abnormalities in a mouse model of RSTS using magnetic resonance imaging (MRI) and two novel self-developed automated algorithms for image volumetric analysis. Our results quantitatively confirm key syndromic features observed in RSTS patients, such as reductions in brain size (-16.31%, p < 0.05), white matter volume (-16.00%, p < 0.05), and corpus callosum (-12.40%, p < 0.05). Furthermore, they provide new insight into the developmental origin of the disease. By comparing brain tissues in a region by region basis between cbp(+/-) and cbp(+/+) littermates, we found that cbp haploinsufficiency is specifically associated with significant reductions in prosencephalic tissue, such us in the olfactory bulb and neocortex, whereas regions evolved from the embryonic rhombencephalon were spared. Despite the large volume reductions, the proportion between gray-, white-matter and cerebrospinal fluid were conserved, suggesting a role of CBP in brain size regulation. The commonalities with holoprosencephaly and arhinencephaly conditions suggest the inclusion of RSTS in the family of neuronal migration disorders.
منابع مشابه
Amygdala size in amyotrophic lateral sclerosis without dementia: an in vivo study using MRI volumetry
BACKGROUND Evidence for extra-motor involvement in non-demented patients with amyotrophic lateral sclerosis (ALS) has been provided by multiple studies, in particular neuropathological studies have demonstrated neuronal loss in the amygdala. The aim of this study was to investigate possible alterations of amygdala volumes in vivo. METHODS Twenty-two moderately disabled patients with definite ...
متن کاملBrain Volume Estimation Enhancement by Morphological Image Processing Tools
Background: Volume estimation of brain is important for many neurological applications. It is necessary in measuring brain growth and changes in brain in normal/abnormal patients. Thus, accurate brain volume measurement is very important. Magnetic resonance imaging (MRI) is the method of choice for volume quantification due to excellent levels of image resolution and between-tissue contrast. St...
متن کاملCombined multi-spectral quantitative MRI and volumetry of the brain with the mixed-TSE pulse sequence and bisecting dual- clustering segmentation: a technique for studying regional ageing patterns in large populations
Introduction: Evolution of the brain during life can be divided in three time periods: a period of maturation characterized by increasing myelination and brain growth, an intermediate adulthood period characterized by relative stability, and an ageing period marked by ventricular enlargement, brain atrophy, and white matter (WM) and gray matter (GM) deterioration. Furthermore, these brain evolu...
متن کاملImproving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth
Background:Â Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective:Â This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کامل